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Abstract. We have performed extensive Monte Carlo simulations of two-dimensional 
layered lsing lattice gases with (m - I)-neighbour exclusion in the 1: direction and pair 
attraction in the y direction. We studied the specific heat of the models in systems with 
different rectangular shapes and the spin-spin correlation function in the z direction near 
to lhe critical point. For the m = 3 model both the thermal and magnetic exponents 
were estimated to be close to the known values of the three-state Potts model. Estimates 
for the critical exponents o f  the m = 4 model are consistent with a commensurate- 
incommensurale lransition; however we find no independenl evidence tor the existence 
of  a floating phase. 

1. Introduction 

We consider a two-dimensional anisotropic lsing lattice gas with ferromagnetic pair 
interaction in the y direction and with (m- 1)-neighbour exclusion in the x direction. 
The reduced Hamiltonian of the model is 

i.e. 7f and the couplings denoted by li contain a factor -l/kT. The spin variables 
take the values Ss,y = f l ,  and 1~7 = --M for j = 1 , 2 , .  . . , m - 1 imposes the 
neighbour exclusion. Since two up-spins have to be at least a distance m apart, a hard 
rod with length m can be assigned to each plus spin. Thus (1.1) can be considered to 
describe the ordering phenomena of attractive hard rods in two dimensions. The low- 
temperature phase of (1.1) is m-fold degenerate. The phase coexistence is believed 
to end at a transition point. In this paper we verify this and investigate the properties 
of this phase transition for m = 3 and 4 for the case K, = K,. 

The model in (1.1) belongs to the class of lattice gas models (for a review see 
[I]) with near neighbour exclusion, e.g. dimers [2], hard-squares (31, hard-hexagons 
[4] etc. The quantum version of the model was introduced in [5] and studied by exact 
diagonalization and finite-size scaling, later the classical version was investigated by 
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Monte Carlo (MC) simulations [6]. Although results for dimers (m = 2) were clearly 
in favour of king-like critical behaviour, for larger rods m 2 3 no definite answer 
could be obtained from the numerical results. Evidently the sues of systems used in 
the calculations (33 for finite-size scaling and 60 x 60 for Mc) were not large enough 
to reach the asymptotic region of the critical point. 

In the present paper-in order to clarify the properties of the transition for m = 3 
and m = &we extend the previous MC simulations 161 using laqer systems with a 
rectangular shape elongated  in the I direction. The-largest systems we used were 
512 x 128 and 1024 x 32. The simulations were performed on the DISP (Delft Ising 
system processor) [7] which has a speed of over 106 spin updates s-I. Hence the 
effective computational time has been increased by a factor of l@ in comparison with 

For simplicity, in the actual calculation we have chosen IC = KY = IC, and used 
a histogramming method IS] to deduce the necessary thermodynamic information in 
the whole scaling regime from the results of a few simulations performed close to 
the critical point Kc. Furthermore we have determined the spin-spin correlation 
function in the I direction near to the critical point using a special purpose hardware 
correlator incorporated in the DISP. This correlator (built by J P L van Amen [9]) 
accumulates the product of spins along lines in the I direction of the lattice over 
all distances up to half the lattice size. This calculation is performed at intervals of 
a few sweeps (the DISP was instructed to visit spins randomly; one sweep is defined 
as the same number of spin update attempts as there are spins in the lattice) and is 
performed simultaneously with the MC process. 

The structure of the paper is as follows. In section 2 some kuwn results about 
chiral symmetry breaking-relevant to our models-are reviewed, together with the 
basic concepts of anisotropic scaiing. Resuits of the simuiations for the m = 3 and 
m = 4 models are presented in sections 3 and 4, respectively. Finally, a discussion 
about the character of the transitions of the two models can he found in section 5. 

. - .  

161. 

2. The chiral Potts model and anisotropic scaling 

Although the ground state of the models defined earlier is m-fold degenerate, the 
permutation symmetry of the Potts model is not applicable. Labelling the ground 
states with positive spins a t  positions + = ++ by an integer k = I+ mod m, it is clear 
that the energy of a horizontal interface (parallel to the I direction) between different 
phases IC, and IC, does not depend on k, and k,. However, the energy of a vertical 
interface does. Such an interface corresponds with inserting k2 - IC, + m mod m 
extra columns of negative spins, thus costing a proportional amount of energy when 

The phase diagram associated with chiral symmetry breaking was investigated by 
Ostlund [lo], and the critical scaling behaviour by den Nijs [ll]. Although for m = 3 
the chiral asymmetry is found to be relevanG they report no evidence !ha!, at least for 
small asymmetry, the three-state Potts behaviour is modified. At stronger asymmetry 
a Lifshitz point is predicted 112-151, where the (three-state Potts) critical line splits in 
a Kosterlitz-Thouless [16] and a commensurate-incommensurate [17-191 transition 
line, with a floating phase in between. However, Haldane and others [20-221 find 
that the floating phase persists for all non-zero asymmetries Ostlund predicts the 
latter scenario for the analogous four-state model [lo]. 

I<, > 0. 
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The anisotropy of the chiral perturbation allows for the possibility of anisotropic 
scaling. Such scaling behaviour has indeed been reported at Lifshitz points and at 
CommenSurateinMmmensurate transitions. Anisotropic scaling has been discussed 
in detail by Binder and Wang [23]; here we summarize only those aspects needed in 
Our analysis. Anisotropic scaling may be formulated on the basis of a rescaling of the 
temperature field t by a factor U ,  resulting in different geometric scale factors in the 
x and y directions: 

1 * t’ = ut 

where f, is the singular part of the reduced free energy per spin. Choosing U = 1tI-l 
in the scaling relation of f, and differentiating twice with respect to t show that the 
bulk specific heat diverges with an exponent 

a = 2 - u z - u  Y (2.2) 
when t -+ 0. 

Since correlation lengths in the I and y directions scale as z and y, the 
divergences at the critical point have exponents U= and vy, respectively. The scaling 
of the magnetic field h requires another exponent denoted w: 

h -+ h’ = u W h .  (2.3) 
Differentiating the scaling relation for the free energy twice with respect to h and 
taking h = 0 then similarly shows that the divergence of the susceptibility x when 
121 -+ 0 is described by an exponent 

7 = 2w - vx - u y .  (2.4) 

The analysis of finite-size data with anisotropic scaling is subject to the complication 
that the rescaled system has a different shape. One way to solve this problem is to 
restrict the system sizes L ,  in the x direction and L ,  in the y direction to L ,  >> L,. 
Including the finite sizes in the scaling relation of the free energy, differentiating 
twice to 1 and choosing u = Lb’”’ yields 

C ( L X , L Y )  L ~ - ~ * - v . ) / %  L”/”” Y (2.5) 

at t = 0, independent of L,. 

the susceptibility 
Differentiating instead to the magnetic field yields the finite-size dependence of 

x(2 = 0) - L p .  (2.6) 

Let the spin-spin correlation function g ( x , y , t )  scale with a factor up. Writing the 
susceptibility as x ( t )  = f d x d y g ( z , y , t )  and rescaling the integral using U = It\-’, 
yields 

x ( t )  - I i y - ” - - ” y  (2.7) 

so that p = vz + v,, - y. 
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Another way to express p in other exponents is to choose 1 = y = 0 and 
U = XI/"=, or the same with x and y interchanged. This yields 

P = vzvr = "U,. (2.8) 
We will also consider the one-dimensional Fourier transform G(q, L , )  of the 
correlation function in the x direction. We choose L, so large that the correlation 
function (which is denoted a(., Ly) to express the dependence on the finite size L )  
becomes independent of L,. Ignoring the oscillating behaviour of a(x, L , )  that is 
expected for a lattice gas, 

Rescaling this formula using U = L!,'"', and replacing the sum by an integral, leads 
to 

G( Q = 0, Lv) ,. L ~ ' " ~ - ' .  (2.10) 

This result for g = 0 generalizes simply to the wavenumber qmu at the maximum of G 
when a( I, L,)  oscillates. Determination of the structure factor Gallows an analysis 
similar to that of the wavelength-dependent susceptibility such as that performed by 
Barber and Selke in the case of the ANNNI model [24]. 

3. Results for the m = 3 model 

In the simulations we used periodic boundary conditions, and system sizes equal to 
powers of 2. These restrictions, which are imposed by the hardware of the DISP, are 
especially significant for the m = 3 model since the ground states of the model do 
not fit in the x direction. One expects alternation in the finite-size results, since even 
powers of 2 are equal to a multiple of 3 plus 1, whereas odd powers of 2 are equal 
to a multiple of 3 plus 2. 

First, we present results on the specific heat. The approximate position of the 
maximum of the specific heat was located first, and then the actual energy distribution 
was determined from simulations close to this point. Then the position Kpmax( L )  
and the value C,,,( L )  of the specific heat maximum were obtained by the method 
described by Ferrenberg and Swendsen [SI. These values together with their statistical 
errors are presented in tables 1 and 2 for rectangular systems with sizes 4L x L and 
32L x L, respectively. 

Table 1. Position and Ihe value of rhe maximum of the specific heal for m = 3 models 
with size 4L x L. Finite-size estimates for ./UY calculated from equation (3.2) are 
presented in the last column. 

4L ICmax C ! l l S X  el% 
I6 0.46270) 0.393(3) 
32 0.4789(12) 0.568(5) 
64 O.S030(11) 0.957(26) 0.642(28) 

128 0.5040(18) 1.275(21) 0.584113) 
256 O.S125(12) 1.798(83) 0.456(38) 
512 0.51380) 2.28(21) 0.419(66) 
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Figure 1. The maximum of the specific heat of the m = 3 model on rectangular finite 
lattices with sizes (0) 4L x L and (b) 32L x L versus the size of the system in the 2 
direction an  a log-log scale. Error ban appear only where they a c e e d  the symbol size. 

Table 2. Position and the value of the maximum of the specific heat for m = 3 models 
with size 32L x L. The estimates for ./UU were calculated using two subsequent entries 
for C". 

32L Km.. C, ./uy 

128 0.482(18) 0.3980) 
256 0.492110) 0.64414) 0.6911) 

The finite-size dependence of the numerical data for Kmax( L) became small for 
the largest systems; thus the critical point of the model h; can be estimated with the 
use of a 1 / L  correction term as 

We expect that the maximum of the specific heat will obey equation (2.5); this relation 
js shown in figures I@) and (b) on a logarithmic scale for systems with shapes 4L x L 
and 32L x L,  respectively. To obtain a quantitative estimate for a/", one has to take 
into account the alternation due to lattice sizes being equal to odd or even powers 

exDonent as 

K,  = 0.516(3). (3.1) 

nf 2. m.llr F e  !on!? p2irs of ..!xes C,,,(L) 2nd Cm,,(4L) to estimcte the crk?!  

From these results, which are included in tables 1 and 2, one can observe that 
corrections to scaling are prominent for small L. We estimate 

(3.3) 
a - = 0.40 k 0.05 
"Y 

The critical exponent of the magnetic susceptibility y is determined using the 
scaling behaviour of the maximum Of the structure factor at the critical point 
(equation (2.10)). We considered the ratio 

(3.4) 
_ I *  ~-~ I ?  - - \  I -  I ?  I" - ~ \  

Kl L ,  J = z,,,l L ,  1i I /  bmax\ L / 4  I 
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Flgurc 2. Ratio of the maxima of subsequent 
stlllcture factors (equation (3.4)) for the 
m = 3 model on Enite latticcs with s k  
32L x L .  I h e  lines are a guide to the eye; 
the finite sizes are L = 8 (+), L = 16 (0) 
and L = 32 (x). 

for systems of shape 32L x L. We note that for these elongated systems the effect of 
odd-even alternation is negligible. Furthermore the maximum of the structure factor 
was found at a wavevector slightly smaller than 2?r/3. We attribute the difference to  
the fact that the system sizes L ,  are not a multiple of 3, and to incomplete ordering. 
R( L, K) is plotted for L = 8, 16 and 32 in figure 2 for several values 

Figure 3. Spin configuration of a 256 x 256 m = 3 model a1 the phase transition 
(h'= 0.516). Plus spins are black, minus spins are white. lacally, the system is already 
close to the ground state with a period of two white and one black columns. Domain 
walls appear as a shift in the positions of the columns. 
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of the Coupling near the critical point. From the position of the crossing points Of 
the R( L ,  K) curves one can estimate the critical coupling as Kc = 0.515(3), which 
coincides with the result from the specific heat analysis (equation (3.3)). From the 
value of the ratio at the critical point R ( L ,  K, )  = 2Y/ ' ' - '  one gets an estimate for 
the critical exponent ratio 

y / u ,  = 1.77 f 0.06. (3.5) 

A single intersection point such as that visible in figure 2, instead of a range where 
the curves coincide, implies an ordinary critical point instead of an incommensurate 
phase. As an illustration of the critical state of the m = 3 model, figure 3 shows 
the 256 x 256 spin configuration resulting from a simulation at K = 0.516. Further 
analysis of the data and a discussion about the possible universality class of the 
transition are postponed to section 5. 

4. Results for the m = 4 model 

The ordered ground state of the m = 4 model properly fits the system size to which 
simulations on the DISP are restricted, so that even-odd alternation of the results may 
be absent. In the same way as that described for the m = 3 model we determined 
the position and the value of the maximum of the specific heat for finite rectangular 
systems with sizes 4 L  x L and 32L x L. The results are collected in tables 3 and 4, 
respectively, while the maximum of the specific heat is shown in figures 4(u) and (b) 
as a function of the system size for the two different aspect ratios, using a logarithmic 
scale. Finite-sue extrapolants for the exponent a/vy  are included in tables 3 and 4. 
These values were calculated in analogy to equation (3.2), but for the m = 4 model 
results on systems with linear sizes 2L and L were compared. 

o i  
- 0 . 5 1  

I 

0 

I] 
i 1 

i I b '  

i - 0 . 5  

3 4 5 3 6 7 
105 4L l o g  32L 

- 1 . 0  

Figure 4. The maximum of Ihe specific heat against sysrem size L for rectangular m = 4 
models for (a)  4L x L and ( b )  32L x L, on a log-log scale. 

Extrapolating the finite-size data yields the following estimates: 

Kc = 0.565 f 0.006 (4.1) 
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Table 3. Position and the value of the maximum of the specific heat and estimates for 
m / u Y  for the m = 4 model calculated for 4L x L sptems. 

4L Kmax em, 

I6 0.4947(14) 0.426(6) 
32 0.5410(10) 0.762(4) 0.840) 
64 0.5606@) 1.123(14) 0.56(2) 

128 0.5682(18) 1.44(13) 0.36(16) 
2:: D.:60:(66) Z.D8(Z?j n.53(2; 

Table 4. Paition and the value of the maximum of the specific heat and estimates for 
cx/vY for the m = 4 model calculated for 32L x L systems. 

128 0.500(10) 0.363(2) 
256 0.528(21 0.632(4\ 0.80(11 

and 

(4.2) - . I . .  - n < - ? r n n n  
U, y y  - ".ad I U,"-. 

We find that the energy distribution of the m = 4 system has two peaks, when the 
coupling constant is close to the value at the specific heat maximum for square and 
rectangular 4L x L systems. The separation of the peaks shrinks to zero for large 
L.  For square systems the peaks have approximately equal heights a t  the specific 
heat maximum, whereas for 4L x L systems the peak at the lower energy is higher 
except for the 512 x 128 system. We observed two maxima for the specific heat in 
the 512 x 128 and 256 x 64 systems. The peak at the smaller coupling is the absolute 
maximum for the 256x64 system, while the other maximum is higher for the 512x 128 
system. The anomalous behaviour of these results may be related to the fact that the 
system is still finite in the z direction (see discussion). 

The susceptibility exponent-as for the m = 3 model-is obtained from the ratio 
of the structure factors R j t ,  Kj (equation (3.4)) for 32L x L systems. Tnis ratio 
is plotted in figure 5 for L = 8, 16 and 32, as a function of the coupling. As 
before, one may estimate the transition point from the crossing points of the curves: 
ICc = 0.565(7) and the susceptibility exponent y/vy = 1.65 zk 0.2. These results are 
slightly less accurate than those obtained from the analysis of the specific heat. 

Next, we study the correlation function of the system near to  the critical point. 
we computed the spin-spin correiation function 5,iir.j in the y direction oi  square 
L x L systems over a distance L / 2 .  The ratio 

._. 

~ ( L , l C j = ~ ~ ~ ( K ) / ~ ~ ( l i )  (4.3) 
is shown in figure 6 for some values of Ii near the critical point. For large L the ratio 
T( L ,  li) approaches 0 and 1 for li < Ii; and li > Ii,, respectively, while at the 
criticai point it is expected to satisfy the scaiiny reiriion iimL+m ~ L , I L ~ ~  = L " W .  

One can see from figure 6 that the transition takes place very Close to the 
T( L ,  IC)  = 1 line, thus q,, = 0.0 & 0.05. The resulting estimate of the critical 
point is consistent with the previous ones: K, = 0.565(5). 

Finally figure 7 illustrates the criticality of the m = 4 model. This configuration 
of 256 x 256 spins was obtained from a simulation at Ii- = 0.565. 

, T r.- 1 ~ n-m.. 
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K K 

Flgure 5. Ratio of the maxima of structure facton 
according to equation (3.4) for the m = 4 model 
for systems of size 32L x L. The finite sues ace 
L = 8 (+), L = 16 (0) and L = 32 (x).  

Figure 6. Ratio of spin-spin correlation functions 
over a distance of half the system size according 
to equalion (4.3) for the m = 4 model on square 
lattices. The finite sizes are L = 16 (x) L = 32 
(0) and L = 64 (+). 

Figure 7. Spin configuration of a 256 x 256 m = 4 model at the phase transition 
(A' = 0.565). Plus spins are black, minus spins are white. The ground state has a 
period of one black and three while columns. In this configuration, the periodicity has 
a tendency to be slightly larger lhan 4 (corresponding with altogether 63 black columns 
instead of 64), in agreement with a commensurate-incommensurate transition. 
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5. Possible universality class of the models 

In previous studies 15, 61 no clear evidence was found about the type of the phase 
transition for the m = 3 and m = 4 models. The numerical results were interpreted 
slightly in favour of a first-order transition for both systems. However, the present, 
extended simulations show clear evidence that the transitions of both models are 
second order. 

Numerical estimates of the critical exponents for the m = 3 model 
(equations (3.3) and (3.5)) are consistent with a transition of the three-state Potts 
type, thus characterized by the exponents [2S]: vz = v = 5/6,  & / U  = 215 and 
y / v  = 26/15 = 1.733. 

This identification is supported by the following approximate mapping of the 
m = 3 model on the three-state chiral Potts model. Following Huse and Fisher [26] 
we consider domains of the system characterized by their ground state ki = 0,1,2 
(see section 2). As was noted in section 2 the interaction energy per spin between two 
domains € ( R I ,  kz) is anisotropic. In the y direction it is the same as for the three-state 
Potts model cy(klr  kZ) - cos((2x/3)(k1 - k 2 ) ) ,  whereas in the I direction there is a 
chiral asymmetry: t z (k , ,k2 )  - cos((2r/3)(k1- k , + A ) ) ,  with A = 114. According 
to numerical studies (12-151 the transition of the three-state chiral Potts model at 
A = 114 is probably the same as for A = 0, i.e. it belongs to the universality class 
of the three-state Potts model. On the basis of this mapping (which stays valid also 
for I<, # ICy) one may expect the same conclusion for the m = 3 model as well. 

Identification of the universality class of the transition of the m = 4 model is 
more difficult. First we note that the exponent ratio (1.2) is inconsistent with a first- 
order transition which has a / v  = 2.0. Moreover, the scaling behaviour of the peak 
distance in the energy distribution leads to the same conclusion. The symmetry of 
the model allows for the presence of a cubic perturbation besides a chiral term in 
the effective Hamiltonian. These two perturbations have been studied separately [ll, 
271, however there is no result available about their simultaneous effect. 

As far as the numerical results for the critical exponents are concerned, they 
are in agreement with a commensurateincommensurate transition as first found by 
Kasteleyn [17], and also described by Pokrovsky and Thlapov [18]. A recent review 
is given by Nagle et a1 [19]. The exponents are vz = 1/2, vy = 1, a / v y  = 1/2, 
y/v, = 312 and p = 0. 

At this point, however, we have to  make three remarks. First, we could not 
obtain a reliable estimate for U=, since the size of the system in the z direction 
satisfying L ,  < L ,  is too small. Thus we have no direct evidence for the presence 
of anisotropic scaling in our system. Our second remark concerns the floating phase, 
which is expected above the temperature of tne iiasteieyn transition. we iouna 
no numerical evidence for the presence of such a floating phase (see figure 5). A 
possible explanation is that the floating phase is too narrow to be detected in the finite 
systems we used; however, we cannot exclude scenarios without a floating phase for 
our model. The third remark concerns a possible connection of the phase transition 
in the m = 4 model and that in the N = 4 state ‘superintegrable’ recently solved 
chiral Pons model (28,291. In this model the known thermal exponents (a, vz and 
vy) coincide with those at the Kasteleyn transition, however the magnetic exponents, 
i.e. 7 ,  are not yet known for the former model. 

In summary, our results indicate that the phase transitions in the m = 3 and 4 
hard-rod models are continuous. For the m = 3 model, our numerical results and 

Y 
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an approximate mapping give clear evidence for a phase transition in the three-state 
Potts universality class. However the transition of the m = 4 model is probably 
anisotropic. Numerical estimates of the critical exponents agree with a Kasteleyn- 
type transition (and with the N = 4 superintegrable chiral Potts model); hovewer, 
there is no evidence for a floating phase. 
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